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Abstract—Fault Tree12 Analysis shows the possible causes 
of a system malfunction by enumerating the suspect 
components and their respective failure modes that may 
have induced the problem. Complex systems often use fault 
trees to analyze the faults. Fault diagnosis, when error 
occurs, is performed by engineers and analysts performing 
extensive examination of all data gathered during the 
mission. International Space Station (ISS) control center 
operates on the data feedback from the system and decisions 
are made based on threshold values by using fault trees. 
Since those decision-making tasks are safety critical and 
must be done promptly, the engineers who manually 
analyze the data are facing time challenge. To automate this 
process, this paper present an approach that uses decision 
trees to capture the contents of fault trees and detect faults 
by running the telemetry data through the decision trees in 
real time. Decision trees (also called classification trees) are 
the binary trees built from data samples and can classify the 
objects into different classes. In our case, the decision trees 
can classify different fault events or normal events. Given a 
set of data samples, decision trees can be built and trained, 
and then by running the new data through the trees, 
classification and prediction can be made. In this way, 
diagnostic knowledge for fault detection and isolation can 
be represented as diagnostic rules; we call this tree the 
diagnostic decision tree(DDT).  By showing the fault path 
in decision trees, we also can point out the root cause when 
a fault occurs. Since all the procedures and algorithms are 
available to build decision trees, the trees built are cost 
effective and time effective. Because  the diagnostic 
decision trees are based on available data and previous 
knowledge of subsystem logic, the DDT can also be trained 
to predict faults and detect unknown faults. Based on this, 
the needs for on-board real time diagnostics can readily be 
met. Diagnostic Decision Trees are built based on the fault 
trees as static trees that serve as the fundamental diagnostic 
trees, and the dynamic DDTs are built over time from 
vehicle telemetry data. The dynamic DDT will add the 
functionalities of prediction, and will be able to detect 
unknown faults. Crew or maintenance engineers can use the 
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decision tree system without having previous knowledge or 
experience about the diagnosed system. To our knowledge, 
this is the first paper to propose a solution to build 
diagnostics decision trees from fault trees, which convert 
the reliability analysis models to diagnostic models.  We 
show through mapping and ISS examples that the approach 
is feasible and effective. We also present future work and 
development. 
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1. INTRODUCTION 

The fault tree concept was introduced by Bell Telephone 
Laboratories in 1962 for the U.S. Air Force for use with the 
Minuteman system [7]. It was later adopted and extensively 
applied by the Boeing Company and is one of the most 
widely used methods in system reliability analysis for a long 
time [3].  It is a deductive procedure for determining the 
various combinations of hardware and software failures and 
human errors that could result in the occurrence of specified 
undesired events (referred to as top events) at the system 
level. As part of the analysis, the minimal cut sets of a fault 
tree can be determined [2], and then fault trees can be built. 
Individual fault trees can be visualized and drawn. Fault 
trees are usually individually built for each part of the 
system for each top event. It is hard to have generic 
software to traverse fault trees. On the other hand, the 
decision trees are matured data structures and it is very easy 
to manipulate them in a software program. Using decision 
trees to represent fault trees will increase the operability and 
decrease response time for system diagnostics, and 
furthermore, will make it easier for users  to visualize the 
root cause of the fault and path from which the fault came. 
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The high availability of many different tree algorithm 
implementations in the computer science field makes using 
decision tree to manage the fault trees one of best 
approaches. In this paper, we present a method to convert 
existing fault trees to decision trees. More general ways of 
constructing decision trees are presented.  The method is 
easy to program and run on a computer since the decision 
tree algorithms have many available implementations [4].  
This method also provides a good tool for researchers on 
simulation and prediction tasks.  By using this method, one 
can analyze data samples from the past and categorized 
them into different classes; abnormal, normal, and fault 
events in such a way that future faults can be predicted from 
the past.  This could be a data mining components with run 
time updating processes.  Such an artificial intelligent 
application is presented in the paper as a form of framework 
architecture.   

2. CONVERSION METHOD 

There are some other attempts to represent fault trees by 
other forms; one of them is building diagnostic maps from 
fault trees [1]. Decision trees are trees usually built from 
data. Let’s look at a fault tree and see how can we map it to 
the decision tree. Take a sample fault tree in the form of 
following: 
 
 

Voltage A Over Trip set point 129

Validity 0 (1 = invalid)
3 consecutive readings

Reconfig. deactive 1(0= act ive)

Voltage B <= 10

Validity 0(1 = invalid)

Over Voltage

 
 

Figure 1 Over Voltage Event Fault Tree 
 

We have 6 inputs to the tree. The inputs remain the same for 
the decision tree. The corresponding decision tree should 
have the same functionality in terms of samples inputs and 
fault triggers. In the other words, the same inputs to the 
fault tree, or to the decision tree will have the same result. 
The corresponding tree can be built as in Figure 2. If by 
applying the telemetry data one can propagate all the way to 
terminal node 6, we know that the system is at an over 
voltage fault. The decision tree not only provides the final 
result if the system is at fault status, it can also provides the 
interim status by looking at where the sample data end up. 
To ease the decision tree generation and notation, we give 
the signals short names as follows: 
 
Consecutive readings = ct; Voltage A over trip point 129 = 
Ua; Validity UaA = UdA; Reconfig deactive = Config; 
Voltage B = Ub; Validate Ub = UdB. 
 

UdA=false

Ub<=10

UdB=
0

Ua=0

UdA=true

Config=1 Config=0

Ub>10

UdB=1

1

5

4

2

3

6

0
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Figure 2 Decision Tree for Over Voltage 
 
To show a more common case that includes an OR gate in 
the fault tree, the other example is shown below: 
 

Frame count

Fail to change in 4 seconds
GNC enabled

SM loss comm =1( =0 not)

3 seconds

GNC Fail
or

 
 

Figure 3 GNC Fail Event Fault Tree 
 
Similarly, we represent the signals in short notations. Frame 
count = Fc; Fail to change in 4 seconds = Fc4; GNC 
enabled = GNCe; SM loss conn = Smloss; 3 second = SM3. 
In this case, more balanced data inputs will end up with 
more evenly distributed decision trees. In the same way as 
we showed earlier, the corresponding decision tree is 
presented as follows: 

3

2

5 64

1

Fc=t Fc=f

Fc4=t Fc4=f SMloss=0

GNCe=t GNCe=f SM3=fSM3=t

=1
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Figure 4 Decision Tree for GNC Fail 

 
We had demonstrated that fault trees can be mapped to 
decision trees with examples of the over voltage and GNC 
fail fault trees. The convenience use of decision tree use is 
that  available decision tree software programs can easily 
pin point  a root cause of an event ( including fault event) 
by recording the edges in the path of the tree when giving 
reports and evaluation of the system status. For more 
general purposes and for ease of illustration, we can abstract 
the information into a map and construct a decision tree 
from this map. The map basically represents the different 
events, including fault events, in the n dimension space. 
When we deal with decision trees, we call the events 
classes. The class could be fault, nominal, or warning etc. 
This demonstration shows that the decision tree not only 
can be derived from the fault tree but also can be 
constructed from data samples, which is very useful in real 
time fault detection and prediction. 
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Figure 5 Classes distributions 
 
To map to the decision tree, we use an example to explain 
it. We assume faults in the two dimension space for 
simplification of visualization. Multiple dimensions will 
follow the same rules. In Figure 5, we give an example of 
the fault scenarios, the cylinders represent normal, called 
Class 1 and cubes represent faults, called Class 2. We will 
use cumulative distribution function (cdf) for tree 
construction. The cdf is the probability that the variable 
takes a value less than or equal to x. That is 
 

 (1) 
 
This can be expressed mathematically for continuous 
distribution: 

  (2) 
 

For a discrete distribution, the cdf can be expressed as 

 

  (3) 
 
When we construct a decision tree, we have a root, then we 
have two branches, further, each of those branches can, 
have a maximum of two branches, until no further branches 
can be constructed and we reach the bottom of the tree and 
we are done. Those procedures could be said in another 
way; we are splitting the data until it couldn’t be split any 
more. So what we need is information on where to split, and 
when do we stop splitting. With the method of accumulated 
distribution function, we construct the trees using the 
following steps. First, calculate the cdf for each class. 
Second, compare the result for each class at all the points. 
Third, the largest value will be picked and the maximum 
value of x will be the split point. Repeat first to third step 
until no more points to split remain. In the example, we 
calculate the cdf for each class as a function of each 
attribute (see Figure 5), and then pick the split point where 
the difference of the two cdf values is maximum.   
 
 
 
 
 
 
 
 
 

Figure 6  Calculate split point by using cdf.(1) 
 
We repeatedly split until all samples in a node are of the 
same class.  In Figure 6, the horizontal axis is the possible 
split points iS  51 <=< i  corresponding to the x-axis in 
Figure 6, and the vertical axis is the value of the cdf for 
each class.  In Figure 6 1f  is the cdf value for class 1 

(cylinders) and 2f  is the cdf value for class 2 (cubes).   
In Figue 5, the vertical axis is the possible split points.  

iS 105 <=< i corresponding to the y-axis in Figure 5, and 
the horizontal axis is the value of the cdf for each class.  In 
Figure 6 1f  is the cdf value for class 1 (cylinders) and 2f  
is the cdf value for class 2 (cubes).  The purpose is to find 
the point where the distance between 1f  and 2f  is the 
maximum.  To calculate the cdf, we used the estimated 
function ii Nn / .  The total number of samples in class 1 is 

6, and in class 2 is 4.  1N  = 6 and 2N  = 4.  As shown in 

Figure 5 at split point 1S  , we have the f1 value of  1/6, and 

2f  value of  0.  At split point 2S  we have the 1f  value of  

2/6, and a f2 value of  1/4.  At split point 3S  we have the 1f  

value no change, still  2/6 or 1/3, and a 2f  value of  2/4 or 
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1/2.  At split point S4 we have the 1f  value of 1/2 and a 2f  

value of 3/4.  At split point 5S  we have the 1f  value of  

5/6 and a 2f  value of no change, 3/4.  

Similarly in Figure 7 at split 6S  the value of 1f  is 1/6 and 

2f  is 0.   At split point 7S  we  
 

S6

S7

S8

S9

S10

1

0

f2 f1

cdf

Si
 

 
Figure 7 Calculate Split Point Using cdf (2) 

 
have the 1f  value of  3/6, and a f2 value of  0.  With the 

same calculations, at split point 8S  we have the 1f  value 

of  4/6 and a f2 value of  0.  Again, at split point 9S  we have 

the 1f  value of 5/6 and a 2f  value of 1/4.  At split point 

10S , we have the 1f  value of  1 and a 2f  value of  2/4.   

 
From Figures 6 and 7, we can see that the split S8 has the 
maximum distance (4/6) between 1f  and 2f  among all 

others.  Therefore, we pick the first split point as 8S .  After 

we split the set on 8S , we have two subsets, one of the 
subsets has only class 1 in it, and so we don’t need to do the 
further split on this subset.  But on the other subset, we will 
repeat the same calculations on the remaining samples to 
find the further split points. The procedures to calculate the 
cdf and select the maximum distance between 1f  and 

2f are the same as above. The constructed tree is shown in 
Figure 8.  
 

S8

1

2 1

S10

S3 2

 
 

 
Figure 8 Final Decision Tree 

 
When the real time data comes in, we let them propagate 
through the decision tree that we constructed. The faults are 
detected and classified  when the data samples fall into a 
fault class at the terminal node. To illustrate how the fault 
happened, we can show the fault mode by tracking the path 
that the data went through.  Visualization of the path with a 
distinctive color or shape will show the user the clear cause 
of the fault. 
 
This method not only can apply to the conversion of the 
fault trees to decision trees, it can also construct decision 
trees from data samples at run time during operation of ISS 
over time. By simply selecting a set of data samples from 
time to time, we can build decision trees dynamically. In 
later time, the built decision trees can be used to compare 
the new data to the old data and to predict future faults. The 
best use of such trees is to build trees by applying grouped 
fault scenarios and then applying real time data to the tree to 
compare the pattern to know fault patterns,  faults can be 
detected when a pattern is matched. 
 

3. APPLICATIONS 

From the above illustration, we can migrate the fault 
trees to decision trees. We also can build decision trees 
from events and telemetry data. The decision trees 
converted from fault trees could be used as diagnostic 
tools. When fault happened, we can recognize the fault 
by running telemetry data through the trees and finding 
out where the data stops. Also, the type of fault can be 
categorized and its path can be determined by such trees. 
Other applications are also possible by utilizing decision 
trees. Once we know that the decision tree is very well 
suited for data mining tasks, we can apply our trees to a 
data mining application targeting at recognizing fault 
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patterns and do early fault detection and prediction. Data 
mining is the process of analyzing data from different 
perspectives and summarizing it into useful information. 
It allows users to analyze data from many different 
dimensions or angles, categorize it, and summarize the 
relationships identified. In our case, it is the process of 
finding fault patterns. A design model, also we can call it 
a framework model, is presented in Figure 9. In the 
figure, we can see how the hybrid decision trees, in this 
case it a kind of fault decision tree, fit into the 
knowledge discovery part of the data mining process [6]. 
Initially, the trees are built for known fault. For example, 
the trees converted from fault trees. Then we have on 
going decision trees building on real time data when the 
system is running. While we know the fault trees could 
not be developed run time and could not be used in such 
application, the decision trees are so easy to be fit into 
such an application. We can build such a tree that 
records fault patterns each time a fault event occurs. 
Especially, we record the fault trends patterns so we can 

use such trees to recognize a fault in its early stages. 

Figure 9 Decision trees in data mining application 

4. CONCLUSION 

We started from ISS fault tree examples to migrate to 
decision trees by presenting a method for converting fault 
trees to decision trees. The method shows that the 
visualization of root cause of faults is easier and that tree 
manipulation becomes more programmatic via available 
decision tree programs. The visualization of decision trees 
for diagnostics shows a format that humans find 
straightforward and easy to understand. For ISS real time 
fault diagnostics, the status of the systems could be shown 
by running the signals through the trees and watching where 
it stops. The other advantage to using decision trees is that 
the trees can learn the fault patterns and predict  future 
faults from the historic data. The learning is done not only 
on the static data sets but also can be runtime; through 
accumulating the real time data sets, the decision trees can 
gain and store faults patterns in the trees and recognize them 
when they reoccur.  The decision tree plays the role in 
knowledge discovery while the fault tree could not. 

5. FUTURE DEVELOPMENT 

This paper presented the method to migrate the fault trees to 
decision trees, which lays a good foundation for using data 
mining technique in advanced diagnostic systems.  The next 
step will naturally fall to a project to implement data mining 
software for fault detection, prediction, and analysis. Such 
software will use the decision trees as an engine inside of 
the diagnostic system application. This engine will be able 
to gain knowledge of fault patterns then recognize them 
when they reoccur.  
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